题目内容

20.已知抛物线y2=4x的焦点F,准线为l,点P为抛物线上一点,且在第一象限,过P点作PA⊥l,垂足为A,|PF|=4,则$\overrightarrow{AF}$•$\overrightarrow{FP}$的值为-8.

分析 利用抛物线的定义,|PF|=||PA|,设F在l上的射影为F′,依题意,可求得点P的坐标,从而可求得|AF′|,可求得点A的坐标,即可求出$\overrightarrow{AF}$•$\overrightarrow{FP}$的值.

解答 解:∵抛物线y2=4x的焦点为F,准线为l,
∴|PF|=||PA|,F(1,0),准线l的方程为:x=-1,
设F在l上的射影为F′,又PA⊥l,
设P(m,n),依|PF|=|PA|得,m+1=4,
解得m=3,n=2$\sqrt{3}$,
∵PA∥x轴,
∴点A的纵坐标为2$\sqrt{3}$,点A的坐标为(-1,2$\sqrt{3}$),
则$\overrightarrow{AF}$•$\overrightarrow{FP}$=(2,-2$\sqrt{3}$)•(2,2$\sqrt{3}$)=4-12=-8.
故答案为:-8.

点评 本题考查抛物线的定义、方程和简单性质,考查转化思想,考查解三角形的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网