题目内容
【题目】如图①,在直角梯形中
,
,
,
,点
是
边的中点,将
沿
折起,使平面
平面
,连接
,
,
,得到如图②所示的几何体.
![]()
(1)求证:
平面
;
(2)若
,二面角
的平面角的正切值为
,求二面角
的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)要证
平面
,只需证明
和
,即可求得答案;
(2)根据已知求得
,
,
,建立空间直角坐标系
,求得平面
的法向量
和平面
的法向量
,即可求得答案.
(1)
平面
平面
,平面
平面
,![]()
![]()
平面![]()
![]()
平面
,
![]()
![]()
又
折叠前后均有
,![]()
![]()
平面![]()
(2)
(1)知
平面
,
二面角
的平面角为![]()
又![]()
平面
,
平面
,
![]()
![]()
依题意![]()
![]()
,所以
,
设![]()
则![]()
依题意
,
![]()
![]()
即![]()
解得
,
故
,
,![]()
如图所示,建立空间直角坐标系![]()
![]()
则
,
,
,
,![]()
![]()
,![]()
由(1)知平面
的一个法向量![]()
设平面
的法向量为![]()
由
,得![]()
令
,得
,
,
![]()
为平面
的一个法向量
![]()
![]()
由图可知二面角
的平面角为锐角
二面角
的余弦值为![]()
练习册系列答案
相关题目
【题目】从某大学中随机选取7名女大学生,其身高x(单位:cm)和体重y(单位:kg)数据如下表:
编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
身高x | 163 | 164 | 165 | 166 | 167 | 168 | 169 |
体重y | 52 | 52 | 53 | 55 | 54 | 56 | 56 |
(1)求y关于x的回归方程;
(2)利用(1)中的回归方程,分析这7名女大学生的身高和体重的变化,并预报一名身高为172cm的女大学生的体重.