题目内容
(1)(2| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 8 |
| 2 |
| 3 |
(2) 计算:lg25+
| 2 |
| 3 |
分析:(1)本题中各数都是指数幂的形式,故可以用有理数指数幂的运算法则化简求值.
(2)本题中各数都是对数的形式,利用对数的运算法则化简求值即可.
(2)本题中各数都是对数的形式,利用对数的运算法则化简求值即可.
解答:(1)解:原式=(
)
-1-(
)-
+(
)-2
=
-1-(
)-2+(
)-2
=
(2)解:原式=2lg5+2lg2+lg5•(1+lg2)+lg22
=2(lg5+lg2)+lg5+lg2(lg5+lg2)
=2+lg5+lg2
=3
| 9 |
| 4 |
| 1 |
| 2 |
| 27 |
| 8 |
| 2 |
| 3 |
| 3 |
| 2 |
=
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
=
| 1 |
| 2 |
(2)解:原式=2lg5+2lg2+lg5•(1+lg2)+lg22
=2(lg5+lg2)+lg5+lg2(lg5+lg2)
=2+lg5+lg2
=3
点评:本题考点是有理数指数幂的化简求值,考查熟练运用指数与对数的运算法则化简求值,指对数的运算法则是指对数运算的基础,学习时应好好掌握理解.
练习册系列答案
相关题目