题目内容

a是实常数,函数f(x)对于任何的非零实数x都有f(
1
x
)=af(x)-x-1,且f(1)=1
,则不等式f(x)-x≥0的解集为(  )
A.(-∞,-
1
5
]∪(0,1]
B.(-∞,-
1
5
]∪[1,+∞)
C.[-
1
5
,0∪(0,1]
D.[-
1
5
,0)∪[1,+∞)
因为f(1)=1,所以f(1)=af(1)-2,即a-2=1,解得a=3,
所以f(
1
x
)=3f(x)-x-1①,
1
x
=t,得到f(t)=3f(
1
t
)-
1
t
-1,即f(x)=3f(
1
x
)-
1
x
-1②,
将①代入②得:f(x)=3[3f(x)-x-1]-
1
x
-1,
化简得:f(x)=
3x
8
+
1
8x
+
1
2

代入不等式得:
3x
8
+
1
8x
+
1
2
-x≥0,
当x>0时,去分母得:5x2-4x-1≤0,即(5x+1)(x-1)≤0,
解得:-
1
5
≤x≤1,所以原不等式的解集为(0,1];
当x<0时,去分母得:5x2-4x-1≥0,即(5x+1)(x-1)≥0,
解得:x≥1或x≤-
1
5
,所以原不等式的解集为(-∞,-
1
5
],
综上,原不等式的解集为(-∞,-
1
5
]∪(0,1].
故选A
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网