题目内容
已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4
,b=6,cosA=-
.
(1)求c;
(2)求cos(2B-
)的值.
| 3 |
| 1 |
| 3 |
(1)求c;
(2)求cos(2B-
| π |
| 4 |
(1)在△ABC中,由余弦定理得,a2=b2+c2-2bccosA,
即48=36+c2-2×c×6×(-
),
整理得:c2+4c-12=0,即(c+6)(c-2)=0,
解得:c=2或c=-6(舍去),
则c=2;
(2)由cosA=-
<0,得A为钝角,
∴sinA=
=
,
在△ABC中,由正弦定理,得
=
,
则sinB=
=
=
,
∵B为锐角,∴cosB=
=
,
∴cos2B=1-2sin2B=-
,sin2B=2sinBcosB=
,
则cos(2B-
)=
(cos2B+sin2B)=
×(-
+
)=
.
即48=36+c2-2×c×6×(-
| 1 |
| 3 |
整理得:c2+4c-12=0,即(c+6)(c-2)=0,
解得:c=2或c=-6(舍去),
则c=2;
(2)由cosA=-
| 1 |
| 3 |
∴sinA=
| 1-cos2A |
2
| ||
| 3 |
在△ABC中,由正弦定理,得
| a |
| sinA |
| b |
| sinB |
则sinB=
| bsinA |
| a |
6×
| ||||
4
|
| ||
| 3 |
∵B为锐角,∴cosB=
| 1-sin2B |
| ||
| 3 |
∴cos2B=1-2sin2B=-
| 1 |
| 3 |
2
| ||
| 3 |
则cos(2B-
| π |
| 4 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 3 |
2
| ||
| 3 |
4-
| ||
| 6 |
练习册系列答案
相关题目