题目内容

20.已知海岛B在海岛A的北偏东45°方向上,A、B相距10海里,小船甲从海岛B以2海里/小时的速度沿直线向海岛A移动,同时小船乙从海岛A出发沿北偏15°方向也以2海里/小时的速度移动
(Ⅰ)经过1小时后,甲、乙两小船相距多少海里?
(Ⅱ)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.

分析 (Ⅰ)利用余弦定理求|EF|的长度即可.
(Ⅱ)设经过t(0<t<5)小时小船甲处于小船乙的正东方向.利用正弦定理建立条件关系进行求解即可.

解答 解:(Ⅰ)经过1小时后,甲船到达E点,乙船到达F点,
|AE|=10-2=8,|AF|=2,∠EAF=60°,┅┅┅┅┅┅┅┅┅┅┅┅┅2分
∴|EF|2=|AE|2+|AF|2-2|AE||AF|cos60°=64+4-2×$8×2×\frac{1}{2}$=52,
∴|EF|=2$\sqrt{13}$.┅┅┅┅┅┅┅┅┅┅┅┅┅┅5分
(Ⅱ)设经过t(0<t<5)小时小船甲处于小船乙的正东方向.
则甲船与A距离为|AE|=10-2t海里,乙船与A距离为|AF|=2t海里,∠EAF=60°,∠EFA=45°,┅┅┅6分
则由正弦定理得$\frac{|AE|}{sin45°}$=$\frac{|AF|}{sin75°}$,
即$\frac{2t}{sin45°}=\frac{10-2t}{sin75°}$,┅┅┅┅┅┅┅┅┅┅┅┅┅┅9分
则t=$\frac{10sin45°}{2sin75°+2sin45°}$=$\frac{10}{3+\sqrt{3}}$<5.┅┅┅┅┅┅┅┅11分
答:经过$\frac{10}{3+\sqrt{3}}$小时小船甲处于小船乙的正东方向.┅┅┅┅┅┅┅┅┅12分.

点评 本题主要考查解三角形的应用,根据正弦定理和余弦定理建立方程关系是解决本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网