题目内容
已知四棱锥S-ABCD的底面ABCD是直角梯形,AB∥CD,BC⊥AB,侧面SAB为正三角形,AB=BC=4,CD=SD=2.如图所示.
(1)证明:SD⊥平面SAB;
(2)求三棱锥B-SAD的体积VB-SAD.
【答案】分析:(1)证明线面垂直,利用线面垂直的判定定理,证明SD⊥SA,SD⊥SB即可;
(2)利用等体积VB-SAD=VD-SAB,即可得到结论.
解答:(1)证明:∵直角梯形ABCD,AB∥CD,BC⊥AB,侧面SAB为正三角形,AB=BC=4,CD=SD=2,
∴BD=2
,AD=2
.
∴在△DSA和△DSB中,有SA2+SD2=42+22=AD2,SB2+SD2=42+22=BD2.
∴SD⊥SA,SD⊥SB
∵SA∩SB=S.
∴SD⊥平面SAB;
(2)解:∵SD⊥平面SAB,△SAB是正三角形,
∴
=4
.结合几何体,可知VB-SAD=VD-SAB.
于是,VB-SAD=VD-SAB=
.
点评:本题考查线面垂直,考查体积的计算,解题的关键是利用线面垂直的判定定理,正确运用体积公式.
(2)利用等体积VB-SAD=VD-SAB,即可得到结论.
解答:(1)证明:∵直角梯形ABCD,AB∥CD,BC⊥AB,侧面SAB为正三角形,AB=BC=4,CD=SD=2,
∴BD=2
∴在△DSA和△DSB中,有SA2+SD2=42+22=AD2,SB2+SD2=42+22=BD2.
∴SD⊥SA,SD⊥SB
∵SA∩SB=S.
∴SD⊥平面SAB;
(2)解:∵SD⊥平面SAB,△SAB是正三角形,
∴
于是,VB-SAD=VD-SAB=
点评:本题考查线面垂直,考查体积的计算,解题的关键是利用线面垂直的判定定理,正确运用体积公式.
练习册系列答案
相关题目