题目内容

求以曲线x2+y2=25与y=x2-13的交点为顶点的多边形的面积.

解析:求多边形的面积,其关键是分析清楚该多边形的形状,如果是特殊多边形,可直接利用面积公式,如果是一般的多边形,则可将图形分割成三角形、特殊四边形等,所以要解方程求交点判断多边形的形状.

如图所示,解

可知该多边形ABCD是等腰梯形,且AB=8,CD=6,h=7.

所以S四边形ABCD= (AB+CD)h= (8+6)×7=49.

点评:作图象时注意利用圆和抛物线的对称性,在练习时,也可只画出四个交点,而忽略去圆和抛物线,显得实用快捷.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网