题目内容

13.直三棱柱ABC-A1B1C1中,AB⊥BC,AB=BC=AA1=2,则该三棱柱的外接球的表面积为(  )
A.B.C.12πD.$\frac{32π}{3}$

分析 根据题意判断直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,我们可以把直三棱柱ABC-A1B1C1补成正四棱柱,则正四棱柱的体对角线是其外接球的直径,求出外接球的直径后,代入外接球的表面积公式,即可求出该三棱柱的外接球的表面积

解答 解:∵在直三棱锥ABC-A1B1C1中,AB⊥CB1,AB=BC=2,AA1=2,
∴AB⊥面BCC1B1
即AB⊥BC
∴直三棱柱ABC-A1B1C1的底面ABC为等腰直角三角形,
把直三棱柱ABC-A1B1C1补成正四棱柱,
则正四棱柱的体对角线是其外接球的直径,
设D,D1分别为AC,A1C1的中点,则DD1的中点O为球心,球的半径$R=\sqrt{C{D^2}+O{D^2}}=\sqrt{3}$,故表面积为S=4πR2=12π.
故选:C.

点评 在求一个几何体的外接球表面积(或体积)时,关键是求出外接球的半径,我们通常有如下办法:①构造三角形,解三角形求出R;②找出几何体上到各顶点距离相等的点,即球心,进而求出R;③将几何体补成一个长方体,其对角线即为球的直径,进而求出R

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网