题目内容
各项均不为零的数列{an},首项a1=1,且对于任意n∈N* 均有6a n+1-a n+1an-2an=0,bn=| 1 | an |
(1)求数列{bn}的通项公式;
(2)数列{an} 的前n项和为Tn,求证Tn<2.
分析:(1)将6an+1-an+1•an-2an=0变形有:
=
-
,即
-
=3(
-
),这样容易求得bn,
(2)由(1)求得bn=
=
,可求得an=
,用放缩法容易证明结论.
| 1 |
| an+1 |
| 3 |
| an |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| 4 |
| 1 |
| an |
| 1 |
| 4 |
(2)由(1)求得bn=
| 3n+1 |
| 4 |
| 1 |
| an |
| 4 |
| 3n+1 |
解答:解:(1)由6a n+1-a n+1an-2an=06an+1-an+1•an-2an=0
=
-
,…(2分)
-
=3(
-
),bn+1-
=3(bn-
)
所{bn-
}是以3为公比
为首项的等比数列…(4分)
∴bn-
=
×3n-1=
,bn=
…(6分)
(2)Tn=
+
+…+
+
…(7分)
<4(
+
+…+
)…(10分)
=4×
=2(1-
)<2 (12分)
| 1 |
| an+1 |
| 3 |
| an |
| 1 |
| 2 |
| 1 |
| an+1 |
| 1 |
| 4 |
| 1 |
| an |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 4 |
所{bn-
| 1 |
| 4 |
| 3 |
| 4 |
∴bn-
| 1 |
| 4 |
| 3 |
| 4 |
| 3n |
| 4 |
| 3n+1 |
| 4 |
(2)Tn=
| 4 |
| 3+1 |
| 4 |
| 32+1 |
| 4 |
| 3n-1+1 |
| 4 |
| 3n+1 |
<4(
| 1 |
| 3 |
| 1 |
| 32 |
| 1 |
| 3n |
=4×
| ||||
1-
|
| 1 |
| 3n |
点评:本题考查数列的递推关系,考查放缩法,解题的难点在于将已知条件合理转化,特别是转化为
-
=3(
-
)是解决问题的关键.
| 1 |
| an+1 |
| 1 |
| 4 |
| 1 |
| an |
| 1 |
| 4 |
练习册系列答案
相关题目
已知各项均不为零的数列{an},定义向量
=(an,an+1),
=(n,n+1),n∈N*.下列命题中真命题是( )
| cn |
| bn |
A、若?n∈N*总有
| ||||
B、若?n∈N*总有
| ||||
C、若?n∈N*总有
| ||||
D、若?n∈N*总有
|