题目内容
已知在各项均不为零的数列{an}中,a1=1,2anan+1+an+1-an=0(n∈N*),
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=anan+1,求数列{bn}的前n项和Sn.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=anan+1,求数列{bn}的前n项和Sn.
分析:(1)由2anan+1+an+1-an=0,两边同除以anan+1,得
-
=2,从而可知数列{
}是首项为
=1,公差为2的等差数列,进而可求数列{an}的通项公式;
(2)根据bn=anan+1,结合(1),将通项裂项,进而可求可.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| a1 |
(2)根据bn=anan+1,结合(1),将通项裂项,进而可求可.
解答:解:(1)由2anan+1+an+1-an=0得
-
=2(3分)
∴数列{
}是首项为
=1,公差为2的等差数列
∴
=1+2(n-1)=2n-1∴an=
(7分)
(2)∵bn=anan+1=
=
(
-
)
∴{bn}的前n项和为:Sn=
[(1-
)+(
-
)+…+(
-
)]=
(1-
)=
(13分)
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
| 1 |
| a1 |
∴
| 1 |
| an |
| 1 |
| 2n-1 |
(2)∵bn=anan+1=
| 1 |
| (2n-1) (2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴{bn}的前n项和为:Sn=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| 1 |
| 2 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
点评:本题以数列递推式为载体,考查构造法证明等差数列,考查数列的通项,考查裂项法求和.
练习册系列答案
相关题目