题目内容

已知函数,其中常数a > 0.

(1) 当a = 4时,证明函数f(x)在上是减函数;

(2) 求函数f(x)的最小值.

 

【答案】

解:(1) 当时,,利用“定义法”证明。

(2)

【解析】

试题分析:

思路分析:(1) 当时,,利用“定义法”证明。执行“设、算、证、结”。

 (2)应用均值定理及“对号函数”的单调性,分,即,即两种情况讨论得到:

解:(1) 当时,

任取0<x1<x2≤2,则f(x1)–f(x2)=

因为0<x1<x2≤2,所以f(x1)–f(x2)>0,即f(x1)>f(x2)

所以函数f(x)在上是减函数;

(2),当且仅当时等号成立,

,即时,的最小值为

,即时,上单调递减,

所以当时,取得最小值为

综上所述:

考点:函数的单调性,“对号函数的性质”,均值定理的应用。

点评:中档题,本题综合性较强,研究函数的单调性,可以利用导数,也可以利用常见函数的单调性。应用均值定理,要注意“一正,二定,三相等”。

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网