题目内容

7.在锐角△ABC中,内角A,B,C所对的边分别为a,b,c,且满足2bsinA=$\sqrt{3}$a.
(1)求角B的大小;
(2)若a+c=5,且a>c,b=$\sqrt{7}$,求边a,c.

分析 (1)由2bsinA=$\sqrt{3}$a,利用正弦定理可得:2sinBsinA=$\sqrt{3}$sinA,sinA≠0,化简整理即可得出.
(2)由余弦定理可得:b2=a2+c2-2accosB,代入化简解出即可.

解答 解:(1)在锐角△ABC中,∵2bsinA=$\sqrt{3}$a,∴2sinBsinA=$\sqrt{3}$sinA,sinA≠0,∴sinB=$\frac{\sqrt{3}}{2}$,B∈(0,$\frac{π}{2}$),
∴B=$\frac{π}{3}$.
(2)由余弦定理可得:b2=a2+c2-2accosB,
∴7=(a+c)2-2ac-2accos$\frac{π}{3}$,化为:ac=6,
与a+c=5,a>c,联立解得:a=3,c=2.

点评 本题考查了正弦定理余弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网