题目内容
已知数列{an},{bn}满足bn=
,求证:{an}成等差数列的充要条件是{bn}成等差数列.(参考公式:12+22+32+…+n2=
).
| a1+2a2+3a3+…+nan |
| 1+2+3+…+n |
| n(n+1)(2n+1) |
| 6 |
分析:先证必要性:若{an}成等差数列,设其公差为d,可用d,a1表示出bn,进而可表示bn+1,易得bn+1-bn为常数,从而可得结论;再证充分性:若{bn}成等差数列,设其公差为e,可得a1+2a2+3a3+…+nan=
bn,进而可得a1+2a2+3a3+…+nan+(n+1)an+1=
bn+1,两式相减可用b1,e表示出an+1,易得an+1-an为常数,从而可得结论;
| n(n+1) |
| 2 |
| (n+1)(n+2) |
| 2 |
解答:证明:必要性证明:
若{an}成等差数列,设其公差为d,则a1+2a2+3a3+…+nan=a1+2(a1+d)+3(a1+2d)+…n[a1+(n-1)d]
=(1+2+3+…+n)a1+[1×2+2×3+3×4+…(n-1)×n]d
=
a1+[(22-2)+(32-3)+…+(n2-n)]d
=
a1+[(
-1)-(
-1)]d
=
a1+
d,
从而bn=
=a1+
(n-1)d,
则bn+1-bn=
d(n∈N*)为常数,∴{bn}成等差数列;
充分性证明:
若{bn}成等差数列,设其公差为e,则a1+2a2+3a3+…+nan=
bn,
则a1+2a2+3a3+…+nan+(n+1)an+1=
bn+1,
两式相减得:(n+1)an+1=
[(n+2)bn+1-nbn],
则an+1=
(b1+ne)-
[b1+(n-1)e]=b1+
ne,
则an+1-an=
e(n∈N*)为常数,
∴{an}成等差数列.
综上所述,{an}成等差数列的充要条件是{bn}成等差数列.
若{an}成等差数列,设其公差为d,则a1+2a2+3a3+…+nan=a1+2(a1+d)+3(a1+2d)+…n[a1+(n-1)d]
=(1+2+3+…+n)a1+[1×2+2×3+3×4+…(n-1)×n]d
=
| n(n+1) |
| 2 |
=
| n(n+1) |
| 2 |
| n(n+1)(2n+1) |
| 6 |
| n(n+1) |
| 2 |
=
| n(n+1) |
| 2 |
| (n-1)n(n+1) |
| 3 |
从而bn=
| ||||
|
| 2 |
| 3 |
则bn+1-bn=
| 2 |
| 3 |
充分性证明:
若{bn}成等差数列,设其公差为e,则a1+2a2+3a3+…+nan=
| n(n+1) |
| 2 |
则a1+2a2+3a3+…+nan+(n+1)an+1=
| (n+1)(n+2) |
| 2 |
两式相减得:(n+1)an+1=
| n+1 |
| 2 |
则an+1=
| n+2 |
| 2 |
| n |
| 2 |
| 3 |
| 2 |
则an+1-an=
| 3 |
| 2 |
∴{an}成等差数列.
综上所述,{an}成等差数列的充要条件是{bn}成等差数列.
点评:本题考查数列递推式及等差关系的确定,考查充分必要条件,考查学生的逻辑推理能力,属中档题.
练习册系列答案
相关题目