题目内容

已知数列{an},{bn}满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
,求证:{an}成等差数列的充要条件是{bn}成等差数列.(参考公式:12+22+32+…+n2=
n(n+1)(2n+1)
6
)
分析:先证必要性:若{an}成等差数列,设其公差为d,可用d,a1表示出bn,进而可表示bn+1,易得bn+1-bn为常数,从而可得结论;再证充分性:若{bn}成等差数列,设其公差为e,可得a1+2a2+3a3+…+nan=
n(n+1)
2
bn
,进而可得a1+2a2+3a3+…+nan+(n+1)an+1=
(n+1)(n+2)
2
bn+1
,两式相减可用b1,e表示出an+1,易得an+1-an为常数,从而可得结论;
解答:证明:必要性证明:
若{an}成等差数列,设其公差为d,则a1+2a2+3a3+…+nan=a1+2(a1+d)+3(a1+2d)+…n[a1+(n-1)d]
=(1+2+3+…+n)a1+[1×2+2×3+3×4+…(n-1)×n]d
=
n(n+1)
2
a1+[(22-2)+(32-3)+…+(n2-n)]d

=
n(n+1)
2
a1+[(
n(n+1)(2n+1)
6
-1)-(
n(n+1)
2
-1)]d

=
n(n+1)
2
a1+
(n-1)n(n+1)
3
d

从而bn=
n(n+1)
2
a1+
(n-1)n(n+1)
3
d
n(n+1)
2
=a1+
2
3
(n-1)d

bn+1-bn=
2
3
d(n∈N*)
为常数,∴{bn}成等差数列;
充分性证明:
若{bn}成等差数列,设其公差为e,则a1+2a2+3a3+…+nan=
n(n+1)
2
bn

a1+2a2+3a3+…+nan+(n+1)an+1=
(n+1)(n+2)
2
bn+1

两式相减得:(n+1)an+1=
n+1
2
[(n+2)bn+1-nbn]

an+1=
n+2
2
(b1+ne)-
n
2
[b1+(n-1)e]
=b1+
3
2
ne

an+1-an=
3
2
e(n∈N*)
为常数,
∴{an}成等差数列.
综上所述,{an}成等差数列的充要条件是{bn}成等差数列.
点评:本题考查数列递推式及等差关系的确定,考查充分必要条件,考查学生的逻辑推理能力,属中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网