题目内容
设a∈R,f(x)=
(x∈R),试确定a的值,使f(x)为奇函数.
| a•2x+a-2 |
| 2x+1 |
∵f(x)=
=
=a-
,
要使函数为奇函数,则必有f(-x)=-f(x),
即a-
=-a+
,
则2a=
+
=
+
=
=2
即a=1.
故答案为:1
| a•2x+a-2 |
| 2x+1 |
| a(2x+1)-2 |
| 2x+1 |
| 2 |
| 2x+1 |
要使函数为奇函数,则必有f(-x)=-f(x),
即a-
| 2 |
| 2-x+1 |
| 2 |
| 2x+1 |
则2a=
| 2 |
| 2x+1 |
| 2 |
| 2-x+1 |
| 2 |
| 2x+1 |
| 2•2x |
| 1+2x |
| 2(2x+1) |
| 2x+1 |
即a=1.
故答案为:1
练习册系列答案
相关题目