题目内容
已知点M是棱长为a的正方体ABCD-A1B1C1D1的棱DD1的中点,则过A,B,M三点的截面积是
a2
a2.
| ||
| 4 |
| ||
| 4 |
分析:AM=
=
a,BM=
=
a,AB=a,由余弦定理,得cos∠AMB=
=
,sin∠AMB=
=
,由此能求出过A,B,M三点的截面积.
a2+
|
| ||
| 2 |
2a2+
|
| 3 |
| 2 |
| ||||||
2×
|
| ||
| 3 |
1-(
|
| 2 |
| 3 |
解答:解:AM=
=
a,
BM=
=
a,
AB=a,
由余弦定理,得cos∠AMB=
=
,
∴sin∠AMB=
=
,
∴过A,B,M三点的截面积S=
×
×
×
=
a2.
故答案为:
a2.
a2+
|
| ||
| 2 |
BM=
2a2+
|
| 3 |
| 2 |
AB=a,
由余弦定理,得cos∠AMB=
| ||||||
2×
|
| ||
| 3 |
∴sin∠AMB=
1-(
|
| 2 |
| 3 |
∴过A,B,M三点的截面积S=
| 1 |
| 2 |
| ||
| 2 |
| 3a |
| 2 |
| 2 |
| 3 |
| ||
| 4 |
故答案为:
| ||
| 4 |
点评:本题考查棱柱中截面面积的求法,解题时要认真审题,仔细解答,要熟练掌握棱柱的结构特征.
练习册系列答案
相关题目