题目内容
(2011•钟祥市模拟)定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
)=
f(x),且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f(
)的值为( )
| x |
| 3 |
| 1 |
| 2 |
| 1 |
| 2010 |
分析:根据已知条件,可求出f(
)=
,f(
)=
,再因为当0≤x1<x2≤1时,有f(x1)≤f(x2),可找到f(
)的范围为f(
)<f(
)<f(
),再根据f(
)=
,f(
)=
求出f(
)和f(
)的值,为同一个值,所以f(
)的值也等于这个值.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2010 |
| 1 |
| 1458 |
| 1 |
| 2010 |
| 1 |
| 2187 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 1458 |
| 1 |
| 2187 |
| 1 |
| 2010 |
解答:解:∵定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
)=
f(x),
∴f(1)+f(0)=1,∴f(1)=1
f(
)+f(1-
)=1,∴f(
)=
f(
)=
f(1),∴f(
)=
f(
)=
∵
>
>
,且当0≤x1<x2≤1时,有f(x1)≤f(x2),
∴f(
)<f(
)<f(
),
又∵f(
)=
f(
)=
f(
)=…=
f(
)=
f(
)=
f(
)=
f(
)=…=
f(1)=
∴f(
)=
=
故选B
| x |
| 3 |
| 1 |
| 2 |
∴f(1)+f(0)=1,∴f(1)=1
f(
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
f(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
f(
| 1 |
| 3 |
| 1 |
| 2 |
∵
| 1 |
| 1458 |
| 1 |
| 2010 |
| 1 |
| 2187 |
∴f(
| 1 |
| 1458 |
| 1 |
| 2010 |
| 1 |
| 2187 |
又∵f(
| 1 |
| 1458 |
| 1 |
| 2 |
| 1 |
| 486 |
| 1 |
| 22 |
. |
| 162 |
| 1 |
| 26 |
| 1 |
| 2 |
| 1 |
| 27 |
f(
| 1 |
| 37 |
| 1 |
| 2 |
| 1 |
| 36 |
| 1 |
| 22 |
| 1 |
| 35 |
| 1 |
| 27 |
| 1 |
| 27 |
∴f(
| 1 |
| 2010 |
| 1 |
| 27 |
| 1 |
| 128 |
故选B
点评:本题主要考查了根据函数性质求函数值,注意赋值法的应用.
练习册系列答案
相关题目