题目内容

(2011•钟祥市模拟)定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x)
,且当0≤x1<x2≤1时,有f(x1)≤f(x2),则f(
1
2010
)
的值为(  )
分析:根据已知条件,可求出f(
1
2
)=
1
2
,f(
1
2
)=
1
2
,再因为当0≤x1<x2≤1时,有f(x1)≤f(x2),可找到f(
1
2010
)
的范围为f(
1
1458
)<f(
1
2010
)<f(
1
2187
)
,再根据f(
1
2
)=
1
2
,f(
1
2
)=
1
2
求出f(
1
1458
)和f(
1
2187
)
的值,为同一个值,所以f(
1
2010
)
的值也等于这个值.
解答:解:∵定义在R上的函数f(x)满足f(0)=0,f(x)+f(1-x)=1,f(
x
3
)=
1
2
f(x)

∴f(1)+f(0)=1,∴f(1)=1
f(
1
2
)+f(1-
1
2
)=1,∴f(
1
2
)=
1
2

f(
1
3
)=
1
2
f(1),∴f(
1
2
)=
1
2

f(
1
3
)=
1
2

1
1458
1
2010
1
2187
,且当0≤x1<x2≤1时,有f(x1)≤f(x2),
f(
1
1458
)<f(
1
2010
)<f(
1
2187
)

又∵f(
1
1458
)=
1
2
f(
1
486
)=
1
22
f(
.
162
)=…=
1
26
f(
1
2
)=
1
27

f(
1
37
)=
1
2
f(
1
36
)=
1
22
f(
1
35
)=…=
1
27
f(1)=
1
27

f(
1
2010
)
=
1
27
=
1
128

故选B
点评:本题主要考查了根据函数性质求函数值,注意赋值法的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网