题目内容
【题目】设函数f(x)=|2x+1|﹣|x﹣4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x﹣4|≥m对一切实数x均成立,求m的取值范围.
【答案】
(1)解:当x≥4时,f(x)=2x+1﹣(x﹣4)=x+5>0,
得x>﹣5,所以x≥4成立;
当﹣
≤x<4时,f(x)=2x+1+x﹣4=3x﹣3>0,
得x>1,所以1<x<4成立;
当x<﹣
时,f(x)=﹣x﹣5>0,得x<﹣5,所以x<﹣5成立.
综上,原不等式的解集为{x|x>1或x<﹣5}
(2)解:令F(x)=f(x)+3|x﹣4|=|2x+1|+2|x﹣4|
≥|2x+1﹣(2x﹣8)|=9,
当﹣
时等号成立.
即有F(x)的最小值为9,
所以m≤9.
即m的取值范围为(﹣∞,9]
【解析】(1)对x讨论,分当x≥4时,当﹣
≤x<4时,当x<﹣
时,分别解一次不等式,再求并集即可;(2)运用绝对值不等式的性质,求得F(x)=f(x)+3|x﹣4|的最小值,即可得到m的范围.
练习册系列答案
相关题目