题目内容
在△ABC中,已知A=45°,cosB=
.
(Ⅰ)求sinC的值;
(Ⅱ)若BC=10,求△ABC的面积.
| 4 |
| 5 |
(Ⅰ)求sinC的值;
(Ⅱ)若BC=10,求△ABC的面积.
(Ⅰ)∵cosB=
,且B∈(0°,180°),
∴sinB=
=
.
sinC=sin(180°-A-B)=sin(135°-B)
=sin135°cosB-cos135°sinB=
•
-(-
)•
=
;
(Ⅱ)由正弦定理得
=
,即
=
,解得AB=14.
则△ABC的面积S=
|AB||BC|sinB=
×10×14×
=42.
| 4 |
| 5 |
∴sinB=
| 1-cos2B |
| 3 |
| 5 |
sinC=sin(180°-A-B)=sin(135°-B)
=sin135°cosB-cos135°sinB=
| ||
| 2 |
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
7
| ||
| 10 |
(Ⅱ)由正弦定理得
| BC |
| sinA |
| AB |
| sinC |
| 10 | ||||
|
| AB | ||||
|
则△ABC的面积S=
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 5 |
练习册系列答案
相关题目