题目内容

11.化简:
$\frac{\sqrt{1-2sin400°cos(-320°)}}{cos50°-\sqrt{1-si{n}^{2}4{0}^{°}}}$.

分析 由诱导公式和同角三角函数基本关系,逐步化简可得.

解答 解:由三角函数公式化简可得:
原式=$\frac{\sqrt{1-2sin(360°+40°)cos(-360°+40°)}}{cos(90°-40°)-\sqrt{co{s}^{2}40°}}$
=$\frac{\sqrt{1-2sin40°cos40°}}{sin40°-cos40°}$=$\frac{\sqrt{si{n}^{2}40°-2sin40°cos40°+co{s}^{2}40°}}{sin40°-cos40°}$
=$\frac{|sin40°-cos40°|}{sin40°-cos40°}$=$\frac{cos40°-sin40°}{sin40°-cos40°}$=-1

点评 本题考查三角函数化简求值,涉及诱导公式和同角三角函数基本关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网