题目内容
已知函数f(x)=m|x-1|(mÎR且m¹0)设向量解析:
=2+cos2q,
=2sin2q+1=2-cos2q
f(
)=m|1+cos2q|=2mcos2q
f(
)=m|1-cos2q|=2msin2q
于是有f(
)-f(
)=2m(cos2q-sin2q)=2mcos2q
∵qÎ(0,
) ∴2qÎ(0,
) ∴cos2q>0
∴当m>0时,2mcos2q>0,即f(
)>f(
)
当m<0时,2mcos2q<0,即f(
)<f(
)
练习册系列答案
相关题目