题目内容

1、设全集U=R,f(x)=sinx,g(x)=cosx,M={x|f(x)≠0},N={x|g(x)≠0},那么集合{x|f(x)g(x)=0}=(  )
分析:由f (x)g (x)=0可知f (x)=0或g (x)=0,所以{x|f (x)g (x)=0}={x|f (x)=0}∪{x|g (x)=0}.而{x|f (x)=0}与M互为补集关系,则可选出答案.
解答:解:{x|f (x)g (x)=0}={x|f (x)=0或g (x)=0}={x|f (x)=0}∪{x|g (x)=0},
故选D
点评:本题考查集合的基本运算,较简单.注意区分“或”与“且”的含义.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网