题目内容
已知数列{an}的首项为a1=
,且满足
=5 (n∈N+),则a6=
.
| 1 |
| 3 |
| an-an+1 |
| an+1an |
| 1 |
| 28 |
| 1 |
| 28 |
分析:方法一:由数列{an}的首项为a1=
,且满足
=5 (n∈N+),先令n=1,求出a2,再令n=2,求出a3,再令n=3,求出a4,再令n=4,求出a5,再令n=5,求出a6.
方法二:由a1=
,知
=3,由
=
-
=5,知数列{
}是等差数列,
=3+5(n-1)=5n-2,所以an=
.由此能求出a6.
| 1 |
| 3 |
| an-an+1 |
| an+1an |
方法二:由a1=
| 1 |
| 3 |
| 1 |
| a1 |
| an-an+1 |
| an+1an |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
| 1 |
| 5n-2 |
解答:解法一:∵数列{an}的首项为a1=
,
且满足
=5 (n∈N+),
∴
=5,
a2=
,a2 =
;
∴
=5,
a3=
,a3=
;
∴
=5,
a4=
,a4=
;
∴
=5,
a5=
,a5=
;
∴
=5,
a6=
,a6=
.
故答案为:
.
解法二:∵a1=
,
∴
=3,
∵
=
-
=5,
∴数列{
}是等差数列,首项是3,公差是5,
因此
=3+5(n-1)=5n-2,
∴an=
.
因此a6=
=
.
故答案为:
.
| 1 |
| 3 |
且满足
| an-an+1 |
| an+1an |
∴
| ||
|
| 8 |
| 3 |
| 1 |
| 3 |
| 1 |
| 8 |
∴
| ||
|
| 13 |
| 8 |
| 1 |
| 8 |
| 1 |
| 13 |
∴
| ||
|
| 18 |
| 13 |
| 1 |
| 13 |
| 1 |
| 18 |
∴
| ||
|
| 23 |
| 18 |
| 1 |
| 18 |
| 1 |
| 23 |
∴
| ||
|
| 28 |
| 23 |
| 1 |
| 23 |
| 1 |
| 28 |
故答案为:
| 1 |
| 28 |
解法二:∵a1=
| 1 |
| 3 |
∴
| 1 |
| a1 |
∵
| an-an+1 |
| an+1an |
| 1 |
| an+1 |
| 1 |
| an |
∴数列{
| 1 |
| an |
因此
| 1 |
| an |
∴an=
| 1 |
| 5n-2 |
因此a6=
| 1 |
| 5×6-2 |
| 1 |
| 28 |
故答案为:
| 1 |
| 28 |
点评:考查等差数列的概念,注意运用基本量思想(方程思想)解题.通项公式和前n项求和公式建立了基本量之间的关系.解题时要注意递推思想的运用,合理地运用递推公式进行求解.
练习册系列答案
相关题目