题目内容
18.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,求入射光线所在直线方程.分析 点A(-2,-3)关于y轴的对称点为A′(2,-3),可设反射光线所在直线的方程为:y+3=k(x-2),利用直线与圆相切的性质即可得出.
解答 解:点A(-2,-3)关于y轴的对称点为A′(2,-3),
故可设反射光线所在直线的方程为:y+3=k(x-2),化为kx-y-2k-3=0.
∵反射光线与圆(x+3)2+(y-2)2=1相切,
∴圆心(-3,2)到直线的距离d=$\frac{|-3k-2-2k-3|}{\sqrt{{k}^{2}+1}}$=1,
化为24k2+50k+24=0,
∴k=-$\frac{4}{3}$,或k=-$\frac{3}{4}$.
故入射光线所在直线方程为:-$\frac{4}{3}$x-y-$\frac{1}{3}$=0或-$\frac{3}{4}$x-y-$\frac{3}{2}$=0,
即4x+3y+1=0或3x+4y+6=0.
点评 本题考查了反射光线的性质、直线与圆相切的性质、点到直线的距离公式、点斜式、对称点,考查了计算能力,属于中档题.
练习册系列答案
相关题目
6.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}-4x+6,x≥0}\\{x+6,x<0}\end{array}\right.$,则不等式f(x)≥f(1)的解集是( )
| A. | [-3,1]∪(3,+∞) | B. | (-3,1)∪(2,+∞) | C. | (-1,1)∪(3,+∞) | D. | (-∞,-3)∪(1,3) |
9.下列函数中,不是偶函数的是( )
| A. | f(x)=x3 | B. | f(x)=x2+1 | C. | $f(x)=\frac{1}{x^2}$ | D. | f(x)=|x| |
13.设P和Q是两个集合,定义集合P+Q={x∈P或x∈Q且∉P∩Q},若P={x|x2-3x-4≤0},Q={x|y=log2(x2-2x-15)},那么P+Q等于( )
| A. | [-1,4] | B. | (-∞,-1]∪[4,+∞) | C. | (-3,5) | D. | (-∞,-3)∪[-1,4]∪(5,+∞) |
8.已知直线l过圆x2+y2-6y+5=0的圆心,且与直线x+y+5=0平行,则l的方程是( )
| A. | x+y-2=0 | B. | x-y+2=0 | C. | x+y-3=0 | D. | x-y+3=0 |