题目内容
已知数列{an}中,a1=1,an+1=
(n∈N*).
(1)求证:数列{
}为等差数列;
(2)设
=
+1,数列{bnbn+2}的前n项和Tn,求证:Tn<
.
| an |
| 2an+1 |
(1)求证:数列{
| 1 |
| an |
(2)设
| 2 |
| bn |
| 1 |
| an |
| 3 |
| 4 |
分析:(1)由an+1=
变形可得:
-
=2,易得数列{
}为等差数列;
(2)结合(1)中结论,可求出数列{bnbn+2}的通项公式,进而利用裂项相消法求出数列{bnbn+2}的前n项和Tn后,易得答案.
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
(2)结合(1)中结论,可求出数列{bnbn+2}的通项公式,进而利用裂项相消法求出数列{bnbn+2}的前n项和Tn后,易得答案.
解答:证明:(1)由an+1=
得:
-
=2且
=1,…(2分)
所以数列{
}是以1为首项,以2为公差的等差数列,…(3分)
(2)由(1)得:
=1+2(n-1)=2n-1,得:an=
;------------(5分)
由
=
+1得:
=2n-1+1=2n,
∴bn=
,------------(7分)
从而:bnbn+2=
=
(
-
)------------(9分)
则 Tn=b1b3+b2b4+…+bnbn+2
=
[(1-
)+(
-
)+…+(
-
)]
=
(1+
-
-
)------------(12分)
=
-
(
+
)<
------------(14分)
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| a1 |
所以数列{
| 1 |
| an |
(2)由(1)得:
| 1 |
| an |
| 1 |
| 2n-1 |
由
| 2 |
| bn |
| 1 |
| an |
| 2 |
| bn |
∴bn=
| 1 |
| n |
从而:bnbn+2=
| 1 |
| n(n+2) |
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| n+2 |
则 Tn=b1b3+b2b4+…+bnbn+2
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| n |
| 1 |
| n+2 |
=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
=
| 3 |
| 4 |
| 1 |
| 2 |
| 1 |
| n+1 |
| 1 |
| n+2 |
| 3 |
| 4 |
点评:本题考查的知识点是等差数列的确定,数列求和,数列与不等式的综合应用,其中(1)的关键是由已知得到
-
=2,(2)的关键是由裂项相消法求出数列{bnbn+2}的前n项和Tn
| 1 |
| an+1 |
| 1 |
| an |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|