题目内容

18.若一个数列各项取倒数后按原来的顺序构成等差数列,则称这个数列为调和数列.已知数列{an}是调和数列,对于各项都是正数的数列{xn},满足x1=2,x1+x2+x3=14,${({x}_{n})}^{{a}_{n}}$=${({x}_{n+1})}^{{a}_{n+1}}$=${({x}_{n+2})}^{{a}_{n+2}}$(x∈N+),则数列{xn}的通项公式为2n

分析 由题设条件知anlgxn=an+1lgxn+1=an+2lgxn+2.设anlgxn=an+1lgxn+1=an+2lgxn+2=p,有$\frac{2p}{{a}_{n+1}}$=$\frac{p}{{a}_{n}}$+$\frac{p}{{a}_{n+2}}$,由此导出xn+12=xnxn+2,所以数列{xn}是等比数列,再根据等比数列的定义,求出通项即可.

解答 解:∵数列{xn}中各项都是正数,
∴anlgxn=an+1lgxn+1=an+2lgxn+2
设anlgxn=an+1lgxn+1=an+2lgxn+2=p,
∴$\frac{p}{{a}_{n}}$=lgxn,$\frac{p}{{a}_{n+1}}$=lgxn+1,$\frac{p}{{a}_{n+2}}$=lgxn+2
∵{an}的各项取倒数后按原来顺序构成等差数列,故an≠0,
∴$\frac{2p}{{a}_{n+1}}$=$\frac{p}{{a}_{n}}$+$\frac{p}{{a}_{n+2}}$.
∴2lgxn+1=lgxn+lgxn+2
∴lgxn+12=lg(xnxn+2).
∴xn+12=xnxn+2
∴数列{xn}是等比数列.
设{xn}的公比为q,x1+x2+x3=14,x1=2,
∴2+2q+2q2=14,
解得q=2,或q=-3(舍去),
∴xn=2×2n-1=2n
故答案为:2n

点评 本题考查了数列的通项公式的求法,求证{xn}为等比数列是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网