题目内容
计算:
(1)已知 a3x=
,求
的值.
(2)
-
+
-
.
(1)已知 a3x=
| 1 |
| 27 |
| a2x+a-2x |
| ax+a-x |
(2)
| log | 81
|
| log | 16
|
| log | 20
|
| log | 30
|
分析:(1)先根据已知条件得出ax=
,然后将所求的式子化简为
,最后将值代入即可.
(2)直接根据对数的运算性质解答即可.
| 1 |
| 3 |
(ax)2+
| ||
ax+
|
(2)直接根据对数的运算性质解答即可.
解答:解:(1)∵a3x=
,
∴ax=
=
=
=
=
(2))
-
+
-
=(log
81-log
30)-(log
16-log
20)
=log
-log
=log
=log
(
)-3
=-3
| 1 |
| 27 |
∴ax=
| 1 |
| 3 |
| a2x+a-2x |
| ax+a-x |
(ax)2+
| ||
ax+
|
(
| ||||||
|
| ||
|
| 41 |
| 15 |
(2))
| log | 81
|
| log | 16
|
| log | 20
|
| log | 30
|
=(log
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
| 2 |
| 3 |
=log
| 2 |
| 3 |
| 27 |
| 10 |
| 2 |
| 3 |
| 4 |
| 5 |
| 2 |
| 3 |
| 27 |
| 8 |
=log
| 2 |
| 3 |
| 2 |
| 3 |
=-3
点评:此题考查了对数的运算性质以及有理数指数幂的化简求值,熟练掌握公式是关键,属于中档题.
练习册系列答案
相关题目