题目内容

已知p:
x-10
x+2
<0
,q:x2-2x+1-a2≥0(a>0),
(1)若非p 是q 的充分不必要条件,求实数a组成的集合M.
(2)对于M中的一切实数x,不等式(x-2)m<2x-1恒成立,求实数m的取值范围.
(1)解
x-10
x+2
<0
得:-2<x<10
∴?p:A={x|x≥10,或x≤-2}
解x2-2x+1-a2≥0得x≥1+a,或x≤1-a,
记B={x|x≥1+a,或x≤1-a}
若非p 是q 的充分不必要条件,
则?p?q,
∴A?B,即
1-a>-2
1+a≤10
a>0
1-a≥-2
1+a<10
a>0

解得M={a|0<a≤3}
(2)若设f(x)=(x-2)m-(2x-1)=(m-2)x+(1-2m),
把它看成是关于x的直线,
若不等式(x-2)m<2x-1恒成立,
则直线恒在x的轴的下方.
∴f(0)≤0且f(3)<0
解得:
1
2
≤m<5
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网