ÌâÄ¿ÄÚÈÝ
13£®Èçͼ£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵxoyÖУ¬½«Ö±Ïßy=$\frac{x}{2}$ÓëÖ±Ïßx=1¼°xÖáËùΧ³ÉµÄͼÐÎÈÆxÖáÐýתһÖܵõ½Ò»¸öÔ²×¶£¬Ô²×¶µÄÌå»ýVÔ²×¶=${¡Ò}_{0}^{1}$¦Ð£¨$\frac{x}{2}$£©2dx=$\frac{¦Ð}{12}{x}^{3}$|${\;}_{0}^{1}$=$\frac{¦Ð}{12}$¾Ý´ËÀà±È£º½«ÇúÏßy=x2£¨x¡Ý0£©ÓëÖ±Ïßy=2¼°yÖáËùΧ³ÉµÄͼÐÎÈÆyÖáÐýתһÖܵõ½Ò»¸öÐýתÌ壬¸ÃÐýתÌåµÄÌå»ýV=2¦Ð£®·ÖÎö ¸ù¾ÝÀà±ÈÍÆÀí£¬½áºÏ¶¨»ý·ÖµÄÓ¦Ó㬼´¿ÉÇó³öÐýתÌåµÄÌå»ý£®
½â´ð ½â£º¸ù¾ÝÀà±ÈÍÆÀíµÃÌå»ýV=${¡Ò}_{0}^{2}¦Ð£¨\sqrt{y}£©^{2}dy$=${¡Ò}_{0}^{2}$¦Ðydy=$\frac{1}{2}¦Ð{y}^{2}{|}_{0}^{2}=2¦Ð$£¬
¹Ê´ð°¸Îª£º2¦Ð
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÐýתÌåµÄÌå»ýµÄ¼ÆË㣬¸ù¾ÝÀà±ÈÍÆÀíÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿