题目内容
已知
=(cos
,sin
),
=(cos
,-sin
),且θ∈[0,
]
(I)求
的最值;
(II)是否存在k的值使|k
+
|=
|
-k
|?
| a |
| 3θ |
| 2 |
| 3θ |
| 2 |
| b |
| θ |
| 2 |
| θ |
| 2 |
| π |
| 3 |
(I)求
| ||||
|
|
(II)是否存在k的值使|k
| a |
| b |
| 3 |
| a |
| b |
分析:(I)由数量积的定义可得
=cosθ-
,下面换元后由函数的最值可得;
(II)假设存在k的值满足题设,即|k
+
|2=3|
-k
|2,然后由三角函数的值域解关于k的不等式组可得k的范围.
| ||||
|
|
| 1 |
| 2cosθ |
(II)假设存在k的值满足题设,即|k
| a |
| b |
| a |
| b |
解答:解:(I)由已知得:
•
=cos
cos
-sin
sin
=cos2θ
∴|
+
|=
=2cosθ
∴
=
=cosθ-
令cosθ=t,t∈[
,1]
∴cosθ-
=t-
,(t-
)′=1+
>0
∴t-
为增函数,其最大值为
,最小值为-
∴
的最大值为
,最小值为-
(II)假设存在k的值满足题设,即|k
+
|2=3|
-k
|2
∵|
|=|
|=1,
•
=cos2θ
∴cos2θ=
∵θ∈[0,
],∴-
≤cos2θ≤1
∴-
≤
≤1
∴0<k≤2+
故存在k的值使|k
+
|=
|
-k
|
| a |
| b |
| 3θ |
| 2 |
| θ |
| 2 |
| 3θ |
| 2 |
| θ |
| 2 |
∴|
| a |
| b |
|
∴
| ||||
|
|
| cos2θ |
| 2cosθ |
| 1 |
| 2cosθ |
令cosθ=t,t∈[
| 1 |
| 2 |
∴cosθ-
| 1 |
| 2cosθ |
| 1 |
| 2t |
| 1 |
| 2t |
| 1 |
| 2t2 |
∴t-
| 1 |
| 2t |
| 1 |
| 2 |
| 1 |
| 2 |
∴
| ||||
|
|
| 1 |
| 2 |
| 1 |
| 2 |
(II)假设存在k的值满足题设,即|k
| a |
| b |
| a |
| b |
∵|
| a |
| b |
| a |
| b |
∴cos2θ=
| 1+k2 |
| 4k |
∵θ∈[0,
| π |
| 3 |
| 1 |
| 2 |
∴-
| 1 |
| 2 |
| 1+k2 |
| 4k |
∴0<k≤2+
| 3 |
故存在k的值使|k
| a |
| b |
| 3 |
| a |
| b |
点评:本题为向量的综合应用,涉及向量的模长和导数法求最值,属中档题.
练习册系列答案
相关题目