题目内容
(2012•盐城三模)已知sin(α+
)+sinα=-
,-
<α<0,则cosα=
.
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
3
| ||
| 10 |
3
| ||
| 10 |
分析:由条件求得sin(α+
)=-
,再由-
<α+
<
,可得cos(α+
)=
,再由 cosα=cos[(α+
)-
],利用两角和差的正弦公式求出结果.
| π |
| 6 |
| 4 |
| 5 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| π |
| 6 |
| π |
| 6 |
解答:解:∵已知sin(α+
)+sinα=-
,-
<α<0,
∴sinαcos
+cosαsin
+sinα=
sinα+
cosα=
sin(α+
)=-
,
sin(α+
)=-
,又-
<α+
<
,
所以cos(α+
)=
.
∴cosα=cos[(α+
)-
]=cos(α+
)•cos
+sin(α+
)•sin
=
•
+(-
)•
=
,
故答案为
.
| π |
| 3 |
4
| ||
| 5 |
| π |
| 2 |
∴sinαcos
| π |
| 3 |
| π |
| 3 |
| 3 |
| 2 |
| ||
| 2 |
| 3 |
| π |
| 6 |
4
| ||
| 5 |
sin(α+
| π |
| 6 |
| 4 |
| 5 |
| π |
| 3 |
| π |
| 6 |
| π |
| 6 |
所以cos(α+
| π |
| 6 |
| 3 |
| 5 |
∴cosα=cos[(α+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| 3 |
| 5 |
| ||
| 2 |
| 4 |
| 5 |
| 1 |
| 2 |
3
| ||
| 10 |
故答案为
3
| ||
| 10 |
点评:本题主要考查两角和差的正弦公式,同角三角函数的基本关系的应用,属于中档题.
练习册系列答案
相关题目