题目内容

在平面直角坐标系中,O为坐标原点,已知两点M(1,—3)、N(5,1),若动点C满足交于A、B两点。

   (I)求证:

(2)在x轴上是否存在一点,使得过点P的直线l交抛物线于D、E两点,并以线段DE为直径的圆都过原点。若存在,请求出m的值,若不存在,请说明理由。

(Ⅰ) 见解析   (Ⅱ)存在m=4


解析:

(I)解:由

知点C的轨迹是过M,N两点的直线,故点C的轨迹方程是:

   (II)解:假设存在于D、E两点,并以线段DE为直径的圆都过原点。设

    由题意,直线l的斜率不为零,  所以,可设直线l的方程为

                                 

  代入 …………7分

10分

 
  

  此时,以DE为直径的圆都过原点。 …………12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网