题目内容
已知图1、图2分别表示A、B两城市某月1日至6日当天最低气温的数据折线图(其中横轴n表示日期,纵轴x表示气温),记A、B两城市这6天的最低气温平均数分别为
和
,标准差分别为sA和sB.则
- A.
,sA>sB - B.
,sA<sB - C.
,sA>sB - D.
,sA<sB
C
分析:本题可以由折线图上的数据做出两个城市的平均气温和方差,也可以根据两个折线图的高低和变化的趋势即波动的大小,得到结果.
解答:由折线图可知A市的平均气温是
=6.25
B市的平均气温是
=11.7
由折线图也可以看出B市的气温较高,
可以看出B市的气温的变化不大方差较小,
故选C.
点评:求两组数据的平均值和方差是研究数据常做的两件事,平均值反映数据的平均水平,而方差反映数据的波动大小,从两个方面可以准确的把握数据的情况.
分析:本题可以由折线图上的数据做出两个城市的平均气温和方差,也可以根据两个折线图的高低和变化的趋势即波动的大小,得到结果.
解答:由折线图可知A市的平均气温是
B市的平均气温是
由折线图也可以看出B市的气温较高,
可以看出B市的气温的变化不大方差较小,
故选C.
点评:求两组数据的平均值和方差是研究数据常做的两件事,平均值反映数据的平均水平,而方差反映数据的波动大小,从两个方面可以准确的把握数据的情况.
练习册系列答案
相关题目
(1)求下列频率分布表中所标字母的值,并补充完成频率分布直方图;
| 分组 | 频数 | 频率 | 频率/组距 |
| … | … | … | … |
| [180,185) | x | y | z |
| [185,190) | m | n | p |
| … | … | … | … |
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB;
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
表一
| 等级 利润 产品 |
一等品 | 二等品 |
| A型 | 4(万元) | 3(万元) |
| B型 | 3(万元) | 2(万元) |
| 项目 用量 产品 |
配件(件) | 资金(万元) |
| A型 | 6 | 4 |
| B型 | 2 | 8 |
某工厂生产A、B两种型号的产品,每种型号的产品在出厂时按质量分为一等品和二等品.为便于掌握生产状况,质检时将产品分为每20件一组,分别记录每组一等品的件数.现随机抽取了5组的质检记录,其一等品数茎叶图如图所示:
(1)试根据茎叶图所提供的数据,分别计算A、B两种产品为一等品的概率PA、PB;
(2)已知每件产品的利润如表一所示,用ξ、η分别表示一件A、B型产品的利润,在(1)的条件下,求ξ、η的分布列及数学期望(均值)Eξ、Eη;
(3)已知生产一件产品所需用的配件数和成本资金如表二所示,该厂有配件30件,可用资金40万元,设x、y分别表示生产A、B两种产品的数量,在(2)的条件下,求x、y为何值时,z=xEξ+yEη最大?最大值是多少?(解答时须给出图示)
| 等级 利润 产品 | 一等品 | 二等品 |
| A型 | 4(万元) | 3(万元) |
| B型 | 3(万元) | 2(万元) |
| 表二 |
| 表二 |
| 项目 用量 产品 | 配件(件) | 资金(万元) |
| A型 | 6 | 4 |
| B型 | 2 | 8 |
某工厂有120名工人,其年龄都在20~60岁之间,各年龄段人数按[20,30),[30,40),[40,50),[50,60]分组,其频率分布直方图如右图所示,工厂为了开发新产品,引进了新的生产设备,要求每个工人都要参加A、B两项培训,培训结束后进行结业考试,已知各年龄段两项培训结业考试成绩优秀的人数如下表所示,假设两项培训是相互独立的,结业考试也互不影响.
(1)若用分层抽样法从全厂工人中抽取一个容量为40的样本,求各年龄段应分别抽取的人数,并估计全厂工人的平均年龄;
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.
| 年龄分组 | A项培训成绩优秀人数 | B项培训成绩优秀人数 |
| [20,30) | 30 | 18 |
| [30,40) | 36 | 24 |
| [40,50) | 12 | 9 |
| [50,60] | 4 | 3 |
(2)随机从年龄段[20,30)和[30,40)中各抽取1人,设这两人中A、B两项培训结业考试成绩都优秀的人数为X,求X的分布列和数学期望.