题目内容
已知A、B、C是△ABC的内角,a,b,c分别是其对边长,向量
=(
,cosA+1),
=(sinA,-1),
⊥
.
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,cosB=
,求b的长.
| m |
| 3 |
| n |
| m |
| n |
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,cosB=
| ||
| 3 |
分析:(Ⅰ)根据
⊥
可得
•
=0,化简得到sin(A-
)=
.再由 0<A<π 可得-
<A-
<
,从而得到 A-
=
,由此求得 A的值.
(Ⅱ)利用同角三角函数的基本关系求出 sinB 的值,由正弦定理
=
,得 b=
,运算求得结果.
| m |
| n |
| m |
| n |
| π |
| 6 |
| 1 |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
| π |
| 6 |
| π |
| 6 |
(Ⅱ)利用同角三角函数的基本关系求出 sinB 的值,由正弦定理
| a |
| sinA |
| b |
| sinB |
| asinB |
| sinA |
解答:解:(Ⅰ)∵
⊥
,∴
•
=(
,cosA+1)•(sinA,-1)=
sinA+(cosA+1)•(-1)=0,
即
sinA-cosA=1,∴sin(A-
)=
.
由于 0<A<π,∴-
<A-
<
,
∴A-
=
,A=
.
(Ⅱ)在△ABC中,A=
,a=2,cosB=
,∴sinB=
.
由正弦定理知:
=
,
∴b=
=
=
.
| m |
| n |
| m |
| n |
| 3 |
| 3 |
即
| 3 |
| π |
| 6 |
| 1 |
| 2 |
由于 0<A<π,∴-
| π |
| 6 |
| π |
| 6 |
| 5π |
| 6 |
∴A-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
(Ⅱ)在△ABC中,A=
| π |
| 3 |
| ||
| 3 |
| ||
| 3 |
由正弦定理知:
| a |
| sinA |
| b |
| sinB |
∴b=
| asinB |
| sinA |
2×
| ||||
|
4
| ||
| 3 |
点评:本题主要考查正弦定理的应用,解三角形,两个向量垂直的性质,两个向量的数量积公式的应用,根据三角函数的值求角,属于中档题.
练习册系列答案
相关题目