题目内容
已知函数f(x)=x2+bx+c(b,c∈R),对任意的x∈R,恒有f′(x)≤f(x).(Ⅰ)证明:当x≥0时,f(x)≤(x+c)2;
(Ⅱ)若对满足题设条件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
分析:(Ⅰ)f′(x)≤f(x)转化为x2+(b-2)x+c-b≥0恒成立,找到b和c之间的关系,再对f(x)和(x+c)2作差整理成关于b和c的表达式即可.
(Ⅱ)对c≥|b|分c>|b|和c=|b|两种情况分别求出对应的M的取值范围,再综合求M的最小值即可.
(Ⅱ)对c≥|b|分c>|b|和c=|b|两种情况分别求出对应的M的取值范围,再综合求M的最小值即可.
解答:解:(Ⅰ)易知f'(x)=2x+b.由题设,对任意的x∈R,2x+b≤x2+bx+c,
即x2+(b-2)x+c-b≥0恒成立,所以(b-2)2-4(c-b)≤0,从而c≥
+1.
于是c≥1,且c≥2
=|b|,因此2c-b=c+(c-b)>0.
故当x≥0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0.
即当x≥0时,f(x)≤(x+c)2.
(Ⅱ)由(Ⅰ)得,c≥|b|
当c>|b|时,有M≥
=
=
,
令t=
则-1<t<1,
=2-
,
而函数g(t)=2-
(-1<t<1)的值域(-∞,
)
因此,当c≥|b|时M的取值集合为[
,+∞).
当c=|b|时,由(Ⅰ)知,b=±2,c=2.
此时f(c)-f(b)=-8或0,c2-b2=0,
从而f(c)-f(b)≤
(c2-b2)恒成立.
综上所述,M的最小值为
即x2+(b-2)x+c-b≥0恒成立,所以(b-2)2-4(c-b)≤0,从而c≥
| b2 |
| 4 |
于是c≥1,且c≥2
|
故当x≥0时,有(x+c)2-f(x)=(2c-b)x+c(c-1)≥0.
即当x≥0时,f(x)≤(x+c)2.
(Ⅱ)由(Ⅰ)得,c≥|b|
当c>|b|时,有M≥
| f(c)-f(b) |
| c2-b2 |
| c2-b2+bc- b2 |
| c2-b2 |
| c+2b |
| b+c |
令t=
| b |
| c |
| c+2b |
| b+c |
| 1 |
| t+1 |
而函数g(t)=2-
| 1 |
| t+1 |
| 3 |
| 2 |
因此,当c≥|b|时M的取值集合为[
| 3 |
| 2 |
当c=|b|时,由(Ⅰ)知,b=±2,c=2.
此时f(c)-f(b)=-8或0,c2-b2=0,
从而f(c)-f(b)≤
| 3 |
| 2 |
综上所述,M的最小值为
| 3 |
| 2 |
点评:本题是对二次函数的恒成立问题和导函数的求法的综合考查.二次函数的恒成立问题一般分两类,一是大于0恒成立须满足开口向上,且判别式小于0,二是小于0恒成立须满足开口向下,且判别式小于0.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|