题目内容

在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中5道题就获得优秀,已知某考生能答对其中10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.

思路分析: 本题属于条件概率问题.在已知该考生在考试中通过的前提下,获得优秀的概率,所以应根据条件概率的公式求解.

解:设事件A为“该考生6道题全答对”,事件B为“该考生答对了其中5道题另一道答错”,事件C为“该考生答对了其中4道题另2道答错”,事件D为“该考生在这次考试中通过”,事件E为“该考生在这次考试中获得优秀”,则A、B、C两两互斥,且D=A∪B∪C,E=A∪B.由古典概型的概率公式及加法公式可知

P(D)=P(A∪B∪C)=P(A)+P(B)+P(C)=;

P(AD)=P(A),P(BD)=P(C∪B);

P(E|D)=P(A∪B|D)=P(A|D)+P(B|D)=,所以所求的概率为.

    误区警示 利用公式P(B∪C|A)=P(B|A)+P(C|A)可使求有些条件概率较为简捷,但应请注意这个性质在“B与C互斥”这一前提下才具备的,因此不要忽视这一条件而乱用这个公式.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网