题目内容

求(3-2x)9展开式中系数绝对值最大的项.

解:(3-2x)9展开式的通项为Tr+1=C9r•39-r•(-2x)r=(-2)r•C9r•39-r•xr
设第r+1项系数绝对值最大,即
所以,∴3≤r≤4且r∈N,∴r=3或r=4,
故系数绝对值最大项为T4=-489888x3或T5=489888x4
分析:利用二项展开式的通项公式求出第r+1项,据系数绝对值最大需满足大于等于其前一项的系数绝对值同时大于等于其后一项的系数绝对值列出不等式求出r,求出展开式中系数绝对值最大的项
点评:本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网