题目内容
比较x2+y2与2(x+y-1)的大小.
解:x2+y2-2(x+y-1)
=x2+y2-2x-2y+2
=x2-2x+1+y2-2y+1
=(x-1)2+(y-1)2≥0.
当x≠1或y≠1时,x2+y2-2(x+y-1)>0,
即x2+y2>2(x+y-1);
当x=1且y=1时,x2+y2-2(x+y-1)=0,
即x2+y2=2(x+y-1).
故x2+y2≥2(x+y-1).
练习册系列答案
相关题目
题目内容
比较x2+y2与2(x+y-1)的大小.
解:x2+y2-2(x+y-1)
=x2+y2-2x-2y+2
=x2-2x+1+y2-2y+1
=(x-1)2+(y-1)2≥0.
当x≠1或y≠1时,x2+y2-2(x+y-1)>0,
即x2+y2>2(x+y-1);
当x=1且y=1时,x2+y2-2(x+y-1)=0,
即x2+y2=2(x+y-1).
故x2+y2≥2(x+y-1).