题目内容

设f(x)=
x
e-2+x2
,g(x)=
ex
x
,对?x1x2R+,有
f(x1)
k
g(x2)
k+1
恒成立,
 
则正数的k取值范围(  )
分析:当x1>0,x2>0时,
f(x1)
k
g(x2)
k+1
恒成立,则只要
f(x1)
k
 max
g(x2)
k+1
 min
即可,从而对函数f(x)利用基本不等式求解最大值,对函数g(x)利用导数判断单调性,进而求解函数g(x)的最小值,代入可求k的范围
解答:解:当x>0时,由基本不等式可得,f(x)=
x
e-2+x2
=
1
x+
1
e2x
1
2
x•
1
e2x
=
e
2

g(x)=
ex
x
g(x)=
(x -1)ex
x2

当x≥1时,g′(x)≥0;x<1时g′(x)<0
∴g(x)在(-∞,1)单调递减,在[1,+∞)单调递增
从而可得当x=1时函数g(x)有最小值e
当x1>0,x2>0时,
f(x1)
k
g(x2)
k+1
恒成立,且k>0
则只要
f(x1)
k
 max
g(x2)
k+1
 min
即可
e
2k
e
k+1
,解可得k≥1
故选:C
点评:本题主要考查了由函数的恒成立问题求解参数的取值范围的问题,解决问题的关键是转化为求解函数的最值,还要注意在本题中求解函数最值时用的两种方法:基本不等式及由导数判断函数的单调性,结合单调性质求最值.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网