题目内容

如图,已知△AOB,∠AOB=,∠BAO=,AB=4,D为线段AB的中点。若△AOC是△AOB绕直线AO旋转而成的,记二面角B-AO-C的大小为θ。
(1)当平面COD⊥平面AOB时,求θ的值;
(2)当θ∈[]时,求二面角C-OD-B的余弦值的取值范围.
解:(Ⅰ) 如图,以O为原点,在平面OBC内垂直于OB的直线为x轴,
OB,OA所在的直线分别为y轴,z轴,
建立空间直角坐标系O-xyz,
则A (0,0,2),B (0,2,0), D (0,1,),
C (2sinθ,2cosθ,0),
=(x,y,z)为平面COD的一个法向量,
,得
取z=sinθ,则=(cosθ,-sinθ,sinθ).
因为平面AOB的一个法向量为=(1,0,0),
由平面COD⊥平面AOB,得·=0,
所以cosθ=0,即θ=.         
(Ⅱ) 设二面角C-OD-B的大小为α,
由(Ⅰ)得当θ=时,cosα=0;当θ∈(]时,tanθ≤-
cosα===-
≤cosα<0,
综上,二面角C-OD-B的余弦值的取值范围为[,0].
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网