题目内容

已知数列{an}中,a1=1,a2n+1+an2+1=2(an+1an+an+1-an),求数列
1
a1a2
1
a2a3
,…,
1
anan+1
,…
的前n项和Sn
分析:本题要根据所给条件,化简整理,得出数列{an}是等差数列并求出通项,数列{
1
anan+1
}的和用裂项法即可求得.
解答:解:∵an+12+an2+1=2(an+1an+an+1-an
∴an+12-2an+1•an+an2-2(an+1-an)+1=0
∴(an+1-an2-2(an+1-an)+1=0
∴(an+1-an-1)2=0
∴an+1-an=1∴{an}为等差数列
∴an=a1+(n-1)•1=n
∴Sn=
1
a1a2
+
1
a2a3
+…+
1
anan+1

=
1
1•2
+
1
2•3
+…+
1
n(n+1)

=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
点评:本题考查了分析运算能力,以及数列求和的方法.分析得出数列是等差数列,会用裂项法求和是关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网