题目内容

已知f(x)=数学公式,则不等式(x+1)f(x+1)+x≤3的解集是________.

(-∞,1]
分析:由题意,可按x+1≥1与x+1<1分为两类,分别求解不等式,然后再将所得的解集求并,即可得到不等式(x+1)f(x+1)+x≤3的解集
解答:由题意f(x)=
∴(x+1)f(x+1)+x=
当x≥0,x+1≥1,此时有f(x+1)=1,不等式(x+1)f(x+1)+x≤3变为2x+1≤3解得x≤1,故有0≤x≤1
当x<0,x+1<1,此时有f(x+1)=-1,不等式(x+1)f(x+1)+x≤3变为-1≤3恒成立,故x<0
综上,不等式(x+1)f(x+1)+x≤3的解集是(-∞,0)∪[0,1]即(-∞,1]
故答案为(-∞,1]
点评:本题考查分段函数不等式的求解方法,考查了分类讨论的思想及转化求解不等式的能力,解题的关键是分为两段解不等式
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网