题目内容
已知cos(x-
)=
,x∈(
,
).
(1)求sinx的值;
(2)求sin(2x+
)的值.
| π |
| 4 |
| ||
| 10 |
| π |
| 2 |
| 3π |
| 4 |
(1)求sinx的值;
(2)求sin(2x+
| π |
| 3 |
(1)因为x∈(
,
),
所以x-
∈(
,
),
sin(x-
)=
=
.
sinx=sin[(x-
)+
]
=sin(x-
)cos
+cos(x-
)sin
=
×
+
×
=
.
(2)因为x∈(
,
),
故cosx=-
=-
=-
.
sin2x=2sinxcosx=-
,
cos2x=2cos2x-1=-
.
所以sin(2x+
)=sin2xcos
+cos2xsin
=-
.
| π |
| 2 |
| 3π |
| 4 |
所以x-
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
sin(x-
| π |
| 4 |
1-cos2(x-
|
7
| ||
| 10 |
sinx=sin[(x-
| π |
| 4 |
| π |
| 4 |
=sin(x-
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
=
7
| ||
| 10 |
| ||
| 2 |
| ||
| 10 |
| ||
| 2 |
| 4 |
| 5 |
(2)因为x∈(
| π |
| 2 |
| 3π |
| 4 |
故cosx=-
| 1-sin2x |
1-(
|
| 3 |
| 5 |
sin2x=2sinxcosx=-
| 24 |
| 25 |
cos2x=2cos2x-1=-
| 7 |
| 25 |
所以sin(2x+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=-
24+7
| ||
| 50 |
练习册系列答案
相关题目