题目内容

已知函数f(t)满足对任意实数xy都有f(x+y)=f(x)+f(y)+xy+1,且f(-2)=-2.

   (1)求f(1)的值;

   (2)证明:对一切大于1的正整数t,恒有f(t)>t;

   (3)试求满足f(t)=t的整数t的个数,并说明理由.

(1)1(2)证明见解析(3)满足条件的整数只有t=1,


解析:

(1)为求f(1)的值,需令

.

.

   (2)令(※)

.

,

,

于是对于一切大于1的正整数t,恒有f(t)>t.

   (3)由※及(1)可知.

下面证明当整数.

(※)得

……,

将诸不等式相加得

   .

综上,满足条件的整数只有t=1,.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网