题目内容

如图,△BCD所在的平面垂直于正△ABC所在的平面,∠BCD=90°,PA⊥平面ABC,DC=BC=2PA,E,F分别为DB,CB的中点,
(1)证明PE平面ABC;
(2)证明AE⊥BC;
(3)求直线PF与平面BCD所成的角的大小.
精英家教网
(1)连接EF,AF
精英家教网

∵平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,CD⊥BC
∴CD⊥平面ABC,结合PA⊥平面ABC,可得PACD
∵EF是△BCD的中位线,∴EFCD且EF=
1
2
CD
∵PACD且PA=
1
2
CD,∴四边形PAFE是平行四边形,可得PEAF,
∵PE?平面ABC,AF?平面ABC,∴PE平面ABC;
(2)∵PA⊥平面ABC,BC?平面ABC,∴BC⊥PA
∵正△ABC中,F为BC中点,∴BC⊥AF
∵AF、PA是平面PAFE内的相交直线,
∴BC⊥平面PAFE,
∵AF?平面PAFE,∴AE⊥BC;
(3)∵平面BCD⊥平面ABC,平面BCD∩平面ABC=BC,AF⊥BC
∴AF⊥平面BCD,结合PEAF可得PE⊥平面BCD,
因此,∠PFE就是直线PF与平面BCD所成的角
∵正△ABC中,F为BC中点,∴AF=
3
2
BC,可得PE=
3
2
BC,
又∵△BCD的中位线FE=
1
2
CD,CD=BC,∴FE=
1
2
BC
因此RtPEF中,tan∠PFE=
PE
FE
=
3
,可得∠PFE=60°
即直线PF与平面BCD所成的角的大小为60°.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网