题目内容
11.不等式(a2-4)x2+(a+2)x-1≥0的解集是空集,则实数a的范围为( )| A. | $(-2,\frac{6}{5})$ | B. | $[-2,\frac{6}{5})$ | C. | $[-2,\frac{6}{5}]$ | D. | $[-2,\frac{6}{5})∪\{2\}$ |
分析 根据二次项的系数含有参数故分两种情况,再由解集是空集和二次方程的解法列出不等式分别求解,最后再把结果并在一起.
解答 解:根据题意需分两种情况:
①当a2-4=0时,即a=±2,
若a=2时,原不等式为4x-1≥0,解得x≥$\frac{1}{4}$,故舍去,
若a=-2时,原不等式为-1≥0,无解,符合题意;
②当a2-4≠0时,即a≠±2,
∵(a2-4)x2+(a+2)x-1≥0的解集是空集,
∴$\left\{\begin{array}{l}{{a}^{2}-4<0}\\{△=(a+2)^{2}-4({a}^{2}-4)×(-1)<0}\end{array}\right.$,解得-2<a<$\frac{6}{5}$,
综上得,实数a的取值范围是[-2,$\frac{6}{5}$).
故选:B.
点评 本题考查了二次不等式的解法,注意当二次项的系数含有参数时,必须进行讨论,考查了分类讨论思想.
练习册系列答案
相关题目
2.给出两个命题:命题p:命题“存在x∈R,x2+x-1<0”的否定是“任意x∈R,x2+x-1>0”;命题q:函数y=log2($\sqrt{{x}^{2}+1}$-x)是奇函数.则下列命题是真命题的是( )
| A. | p∧q | B. | p∨¬q | C. | p∨q | D. | p∧¬q |
16.已知三棱锥O-ABC的顶点A,B,C都在半径为2的球面上,O是球心,∠AOB=120°,当△AOC与△BOC的面积之和最大时,三棱锥O-ABC的体积为( )
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{3}$ |