题目内容
18.已知非零向量$\overrightarrow{a},\overrightarrow{b}$不共线.若$\overrightarrow{AB}=\overrightarrow{a}+\overrightarrow{b}$,$\overrightarrow{AC}=2\overrightarrow{a}+8\overrightarrow{b}$,$\overrightarrow{AD}=3\overrightarrow{a}-3\overrightarrow{b}$,求证:A,B,C,D四点共面.分析 不存在实数k,使得$\overrightarrow{AD}=k\overrightarrow{AB}$,可知:$\overrightarrow{AD}$,$\overrightarrow{AB}$不共面.令$\overrightarrow{AC}$=$x\overrightarrow{AB}+y\overrightarrow{AD}$,则$2\overrightarrow{a}+8\overrightarrow{b}$=x$(\overrightarrow{a}+\overrightarrow{b})$+y$(3\overrightarrow{a}-3\overrightarrow{b})$,利用非零向量$\overrightarrow{a},\overrightarrow{b}$不共线,即可得出.
解答 证明:∵不存在实数k,使得$\overrightarrow{AD}=k\overrightarrow{AB}$,可知:$\overrightarrow{AD}$,$\overrightarrow{AB}$不共面.
令$\overrightarrow{AC}$=$x\overrightarrow{AB}+y\overrightarrow{AD}$,
则$2\overrightarrow{a}+8\overrightarrow{b}$=x$(\overrightarrow{a}+\overrightarrow{b})$+y$(3\overrightarrow{a}-3\overrightarrow{b})$=(x+3y)$\overrightarrow{a}$+(x-3y)$\overrightarrow{b}$,
又非零向量$\overrightarrow{a},\overrightarrow{b}$不共线,
∴$\left\{\begin{array}{l}{2=x+3y}\\{8=x-3y}\end{array}\right.$,解得x=5,y=-1.
∴存在实数x,y使得$\overrightarrow{AC}$=$x\overrightarrow{AB}+y\overrightarrow{AD}$,
∴A,B,C,D四点共面.
点评 本题考查了向量的共线定理、向量的共面基本定理,考查了推理能力与计算能力,属于中档题.
| A. | ($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$) | B. | (-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$) | ||
| C. | ($\frac{\sqrt{5}}{5}$,-$\frac{2\sqrt{5}}{5}$)或(-$\frac{\sqrt{5}}{5}$,$\frac{2\sqrt{5}}{5}$) | D. | ($\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$)或(-$\frac{2\sqrt{5}}{5}$,$\frac{\sqrt{5}}{5}$) |
| A. | $\frac{31+10\sqrt{6}}{12}$ | B. | $\frac{23+4\sqrt{30}}{12}$ | C. | $\frac{7+2\sqrt{10}}{12}$ | D. | 4 |