题目内容

函数f(x)=ax2+bx+1(a,b为实数,且a≠0),x∈R,H(x)=
f(x)
0
(x>0)
(x=0)
-f(x)(x<0)

(1)若f(-1)=0,且方程ax2+bx+1=0(a≠0)有唯一实根,求H(x)的表达式;
(2)在(1)的条件下,当x∈[-2,2]时,g(x)=f(x)-kx是单调函数,求实数k取值范围;
(3)设a=1且b=0,解关于m的不等式:H(m2+2)+H(3m)>0.
分析:(1)由题意可得△=b2-4a=0,结合f(-1)=0,代入可求a,b,可求f(x),进而可求H(x)
(2)由g(x)=f(x)-kx=x2+(2-k)x+1,结合二次函数的性质及g(x)在[-2,2]上是单调函数可得
-2+k
2
≤-2
k-2
2
≥2
,从而可求k的范围
(3)由题意可求H(x),结合H(x)是奇函数可把已知转化为H(m2+2)>H(-3m),结合H(x)在R上是增函数可得关于m的不等式,从而可求m的范围
解答:解:(1)∵ax2+bx+1=0(a≠0)有相等实根
∴△=b2-4a=0①…(1分)
又∵f(-1)=0
即 a-b+1=0②…(1分)
由①、②可得:a=1,b=2…(1分)
F(x)=
x2+2x+1,x>0
0,x=0
-x2-2x-1,x<0
…(1分)
(2)∵g(x)=f(x)-kx=x2+(2-k)x+1…(1分)
∵g(x)在[-2,2]上是单调函数
-2+k
2
≤-2
k-2
2
≥2
…(3分)
∴k≤-2或k≥6…(1分)
(3)∵a=1且b=0
∴f(x)=x2+1…(1分)
H(x)=
x2+1x>0 
0x=0 
-x2-1x<0 
…(1分)
∴H(x)是奇函数且在R上是增函数
∵H(m2+2)+H(3m)>0
∴H(m2+2)>-H(3m)
∵H(x)是奇函数
∴H(m2+2)>H(-3m)…(1分)
又∵H(x)在R上是增函数
∴m2+2>-3m
解得:m>-1或m<-2…(1分)
∴不等式的解集为(-∞,-2)∪(-1,+∞)…(1分)
点评:本题主要考查了二次方程根的存在条件,二次 函数的单调性的应用,及利用奇函数及函数的单调性解不等式等知识的综合应用,属于中档试题
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网