题目内容
已知函数f(x)=ax2+ln(x+1).
(Ⅰ)当a=
时,求函数f(x)的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围;
(Ⅲ)求证:(1+
)×(1+
)×(1+
)…(1+
)<e(其中,n∈N*,e是自然对数的底数)
(Ⅰ)当a=
| 1 |
| 4 |
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围;
(Ⅲ)求证:(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
分析:(Ⅰ)求导函数,由导数的正负可得函数的单调区间;
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,等价于ax2+ln(x+1)-x≤0恒成立,设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可,分类讨论,可求实数a的取值范围;
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用裂项法,结合对数的运算法则,可证结论
(Ⅱ)当x∈[0,+∞)时,不等式f(x)≤x恒成立,等价于ax2+ln(x+1)-x≤0恒成立,设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可,分类讨论,可求实数a的取值范围;
(Ⅲ)据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,利用裂项法,结合对数的运算法则,可证结论
解答:解:(Ⅰ)当a=
时,f(x)=
x2+ln(x+1)(x>-1),
f′(x)=
x+
=
(x>-1),
∵x>-1,x2+x+2=(x+
)2+
>0,
∴f′(x)>0,
∴函数f(x)的单调递增区间为(-1,+∞).
(Ⅱ)∵当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
由g′(x)=2ax+
-1=
,
(ⅰ)当a=0时,
g′(x)=-
(x>-1),
当x>0时,g′(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,
由g′(x)=
=0,
∵x∈[0,+∞),
∴x=
-1,
①若
-1<0,即a>
时,在区间(0,+∞)上,g′(x)>0,则函数g(x)在(0,+∞)上单调递增,
g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
-1≥0,即0<a≤
时,函数g(x)在(0,
-1)上单调递减,在区间(
-1,+∞)上单调递增,同样g(x)在[0,+∞)上无最大值,不满足条件.
(ⅲ)当a<0时,g′(x)=
,
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g′(x)<0,故函数g(x)在[0,+∞)上单调递减,故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(Ⅲ)证明:据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,
又
=2(
-
),
∵ln{(1+
)•(1+
)•(1+
)…[1+
]}
=ln(1+
)+ln(1+
)+ln(1+
)+…+ln[1+
]
<
+
+
+…+
=2[(
-
)+(
-
)+(
-
)+…+(
-
)]
=2(
-
)<1,
∵ln{(1+
)•(1+
)•(1+
)…[1+
]}
=ln(1+
)+ln(1+
)+ln(1+
)+…+ln(1+
)
<
+
+
+…+
=2[(
-
)+(
-
)+(
-
)+…+(
-
)]
=2(
-
)<1,
∴(1+
)•(1+
)•(1+
)•…•[1+
]<e.
| 1 |
| 4 |
| 1 |
| 4 |
f′(x)=
| 1 |
| 2 |
| 1 |
| x+1 |
| x2+x+2 |
| 2(x+1) |
∵x>-1,x2+x+2=(x+
| 1 |
| 2 |
| 7 |
| 4 |
∴f′(x)>0,
∴函数f(x)的单调递增区间为(-1,+∞).
(Ⅱ)∵当x∈[0,+∞)时,不等式f(x)≤x恒成立,即ax2+ln(x+1)-x≤0恒成立,
设g(x)=ax2+ln(x+1)-x(x≥0),只需g(x)max≤0即可.
由g′(x)=2ax+
| 1 |
| x+1 |
| x[2ax+(2a-1)] |
| x+1 |
(ⅰ)当a=0时,
g′(x)=-
| x |
| x+1 |
当x>0时,g′(x)<0,函数g(x)在(0,+∞)上单调递减,故g(x)≤g(0)=0成立.
(ⅱ)当a>0时,
由g′(x)=
| x[2ax+(2a-1)] |
| x+1 |
∵x∈[0,+∞),
∴x=
| 1 |
| 2a |
①若
| 1 |
| 2a |
| 1 |
| 2 |
g(x)在[0,+∞)上无最大值(或:当x→+∞时,g(x)→+∞),此时不满足条件;
②若
| 1 |
| 2a |
| 1 |
| 2 |
| 1 |
| 2a |
| 1 |
| 2a |
(ⅲ)当a<0时,g′(x)=
| x[2ax+(2a-1)] |
| x+1 |
∵x∈[0,+∞),
∴2ax+(2a-1)<0,
∴g′(x)<0,故函数g(x)在[0,+∞)上单调递减,故g(x)≤g(0)=0成立.
综上所述,实数a的取值范围是(-∞,0].
(Ⅲ)证明:据(Ⅱ)知当a=0时,ln(x+1)≤x在[0,+∞)上恒成立,
又
| 2n |
| (2n-1+1)(2n+1) |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
∵ln{(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
=ln(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
<
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
=2[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
=2(
| 1 |
| 2 |
| 1 |
| 2n+1 |
∵ln{(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
=ln(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
<
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
=2[(
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 9 |
| 1 |
| 2n-1+1 |
| 1 |
| 2n+1 |
=2(
| 1 |
| 2 |
| 1 |
| 2n+1 |
∴(1+
| 2 |
| 2×3 |
| 4 |
| 3×5 |
| 8 |
| 5×9 |
| 2n |
| (2n-1+1)(2n+1) |
点评:本题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明,考查分类讨论的数学思想,属于难题.
练习册系列答案
相关题目