题目内容

已知函数f(x)=x3-3ax,(a>0).
(1)当a=1时,求f(x)的单调区间;
(2)求函数y=f(x)在x∈[0,1]上的最小值.
分析:(1)将a=1代入,求出函数的导数,利用导数求出其单调区间即可.
(2)求出函数的导数,利用导数研究函数在区间[0,1]上的单调性,求出最小值即可.本题中导数带着参数,故求解时要对其范围进行讨论.
解答:解:(1)当a=1时,f(x)=x3-3x,所以f'(x)=3x2-3=3(x+1)(x-1).
令f'(x)=0得x=±1,列表:
x (-∞,-1) -1 (-1,1) 1 (1,+∞)
f'(x) + 0 - 0 +
f(x) 极大值 极小值
∴f(x)的单调递增区间是(-∞,-1),(1,+∞);单调递减区间是(-1,1)(6分)
(2)由f(x)=x3-3ax,(a>0),得f′(x)=3x3-3a=3(x+
a
)(x-
a
)
∵x∈[0,1]
①当0<a<1时,
x 0 (0,
a
)
a
(
a
,1)
1
f'(x) - 0 +
f(x) 0 -2a
a
1-3a
x=
a
时,f(x)
取得最小值,最小值为-2a
a
.(9分)
②当a≥1时,f'(x)≤0,f(x)在x∈[0,1]上是减函数,当x=1时,f(x)取得最小值,最小值为1-3a.
综上可得:f(x)min=
-2a
a
,(0<a<1)
1-3a.(a≥1)
(12分)
点评:本题考查利用导数研究函数在闭区间上的最值,求解的关键是正确求出函数的导数,以及根据参数的取值范围及导数得出函数的单调区间,确定最值的存在位置.列表表示函数的性质比较直观,解题时要善于运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网